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ABSTRACT

This document describes the detailed design for the Four-Bit ALU Trainer.
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1 INTRODUCTION
This document will describe the detailed design for the ‘Four-Bit ALU Trainer Project’
which has been taken up by Rodney Moffitt as the project course ELG4905 for the
semester of January - April 1995.

The ‘4-Bit ALU Trainer’ is a device that will provide students with the capability to
explore a hardware implementation of a multiply and divide capable arithmetic processor.
This processor uses a micro-program sequencer to generate the necessary control signals
which drive logic to perform complex instructions. In the simplest sense a micro-
programmed sequencer can be just an EPROM with the address as the micro-instruction
‘Op-code’ and the data as the control signals.

Such a system is required to implement complex instructions such as multiply and divide
which require a number of ‘simpler’ instructions in order to execute. For example addition
and subtraction requires only an ALU, yet multiply requires not only addition yet also
shifting and some sort of sequencer to control these operations. Therefore the trainer shall
provide for all control signals based on algorithms to be presented later in this document.

Multiply, divide and some other instructions will be the ‘instructions’ that the trainer will
execute. The user needs only set-up the data and instruction registers and then toggle a
clock signal. The user is notified of completion of the instruction with the ‘COMPLETE’
signal. Each of these instructions will be composed of a number of individual micro-
instructions which are mapped from the address of the control memory.
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2 ARCHITECTURE OVERVIEW
The following diagram outlines the main parts of the overall architecture of the ALU
Trainer.

User I/O

User I/O

MicroProgrammed
Sequencer

Transfer Logic and
Registers

4 Bit ALU
LED's

Figure 1: Main Parts of the Overall Architecture
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Three major parts that make up the ALU Trainer are:

1. The Micro-programmed Sequencer: This mainly consists of an EPROM based micro-
program sequencer and associated logic. The user can set the instruction to execute
through the IR (Instruction Register).

2. Transfer Logic and Registers: The ‘linking’ logic between the ALU and the
registers provides for the next main part of the trainer. This includes response drivers
for the micro-program control signals and busses to connect the registers. User input
via the ALPHA, GAMMA and GAMMA registers are available, plus LED outputs of
the registers and control signals.

3. 4 Bit ALU: The arithmetic and logic block provides instructions based on signals from
the micro-instruction take as input the value of A (Accumulator) and B (secondary
input register) and channels the output back to the A register and E (carry) registers.

The remainder of this document shall provide the necessary details of the design of the ‘4
Bit ALU Trainer’ based on the above model.
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3 MICRO-PROGRAM SEQUENCER
The micro-program sequencer can be seen in Figure 2. This part of the trainer is
responsible for the following:

• Initiating a ‘instruction’ (such as divided, multiply, etc.) entered by the user in IR.

• Determining the next micro-instruction to enter into the CAR register (which in turn
becomes the address for the control memory).

The following elements are involved:

1. RESET: The RESET input is set high to initialize the trainer to start a instruction.
When RESET is high the CAR MUX selector input S goes high and the SC PE
(Parallel Enable) goes high. This causes the value of IR to be channelled to CAR, and
SC to be loaded with the initial counter value. ‘R/F’ is the OR of RESET and FINISH
which is used in a number of places in the trainer. More details on these signals can be
found in the section ‘CLK Timing’.

2. COMPLETE: The COMPLETE output indicates to the user that the current
instruction (indicated by the value of IR) has completed. It goes high whenever SC has
completed decrementing down to zero, in other words all of the required iterations of
the instruction has completed. More details on this signal can be found in the section
‘CLK Timing’.

3. FINISH: The FINISH output is similar to COMPLETE except it stays high until the
next falling edge of CLK rather than the next rising edge, as COMPLETE does. This
signal will be mentioned more often than COMPLETE since the discussion will have
to do mostly with the actions of the combination logic rather than what the user will
see when execution of a instruction is complete (which will just be an LED driven by
the COMPLETE signal).

4. CLK: The CLK input provides synchronization for the trainer, which is toggled by the
user. The CAR is the only register that latches on the rising edge, while the remaining
registers (E, A, Q and SC) latch (or in the case of SC, decrement) on the falling edge
of CLK. More details on this element can be found in the section ‘CLK Timing.

5. IR: The user enters an 8 bit value representing the address of the first micro-
instruction of the instruction to be executed in the control memory. IR drives the input
of the ‘I1’ input of the CAR MUX, therefore when this multiplexor selector input is
‘1’, the value of IR is channelled to CAR to become the new address of the control
memory.

6. MUX: the CAR MUX determines which of either the ‘FULL ADDER OUTPUT’ or
‘IR’ shall be used as the new value of ‘CAR’. The selector input ‘S’ determines this, if
S=0 then the FULL ADDER OUTPUT is used, else the value is channelled from IR.
The S input is the OR of ‘RESET’ and the control signal ‘DSC’, which means that the
‘I1’ input from IR is channelled to the CAR ONLY when RESET OR DSC are set.
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 The MUX will be implemented using a pair of 74157 ‘Quad 2-Input Multiplexors’.

7. CAR: The Current Address Register holds the address of the micro-instruction that is
currently being ‘executed’. In other words it hold the address of the control memory,
which determines the control signals. The falling edge of CLK latches CAR to the
output of MUX.

 The CAR will be implemented using a pair of 74175 ‘Quad D Flip-Flops’.

8. Control Memory: The mapping of the address to the control signals is done by the
control memory which is implemented as a pair of 8-bit EPROMs, for a total of 16 bits
available for the micro-instruction control signals. More details on this element can be
found in the section ‘Micro-instruction Format’.

9. FULL ADDER: An 8-bit full adder serves to assist in determining the next address for
the CAR. The inputs are the current value of CAR and the output of the ‘Next
Address Logic’, which is a value representing the number of micro-instructions to skip
based on the value of control signals and registers (see the section ‘Branching’ for
more details). Basically it just takes the CAR and adds some value to it, which can be
in the range of ‘+1’ to ‘+6’. The output drives the ‘I0’ input of the MUX.

 A pair of 7483 ‘4-Bit Binary Full Adders’ will be used.

10. SC: The Sequence Counter keeps track of the number of iterations that have occurred
of a instruction. This is needed since complex instructions such as multiply and divide
are executed as loops, where after every loop SC is decremented. When SC is zero the
instruction is finished and the next instruction in IR can be executed.

 SC is a counter and therefore requires a clock. All instructions of this register occur
upon the falling edge of the clock signal CLK.

 SC is loaded when PE (Parallel Enable) is a ‘1’. The value loaded depends on IR
(since not all instructions require the same number of iterations).

 SC is decremented when ‘CEP’ is ‘1’. The ‘DSC’ control signal drives the CEP input,
therefore SC is decremented only when the current micro-instruction has DSC = 1.

 Only one of these inputs can be high when CLK falls, otherwise an unknown state will
result.

 When SC has decremented down to zero the TC (Terminal Count) output goes low.
This drives the ‘FINISH’ output high indicating to the user that another instruction
can be loaded into IR. DSC = 1 also sets the MUX to ‘point’ to IR, forcing CAR to
load IR once again. TC also drives the PE input of the SC. Since all inputs are
synchronous with CLK the SC value does not change until CLK falls again, which at
that time a new value is loaded since PE = 1.

 A 74169 ‘Modulo 16 Binary Synchronous Bi-Directional Counter’ will be used to
implement SC. SC requires values of ‘1’ through ‘5’, so the 0-15 range will be more
than adequate.
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11. Next Address Logic: The amount to add to CAR, i.e. the ‘B’ input to the Full Adder is
determined by this logic. It takes into account the values of E (the carry of the ALU),
R/F, the control signal ‘CB’, whether a left-shift micro-instruction is being executed
and IR. More details on this element can be found in the section ‘Branching’.
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Figure 2: The Micro-program Sequencer
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4 TRANSFER LOGIC AND REGISTERS
The diagram of the ‘transfer logic/registers’ can be seen in Figure 3. This part of the
trainer is responsible for the following:

• Decoding of the micro-instruction signals.

• Provide path to and deal with the operation of the following registers

i. A (through the shifting network of EAQ and interface with the ALU).

ii. E (through the shifting network of EAQ and the output of the ALU).

iii. Q (through the shifting network of EAQ and provide setting of the LSB ‘Q0’
bit of Q).

The following elements are involved:

1. E: The E register holds the ‘carry’ output of the ALU and the MSB of A during left-
shifts. The ‘D’ input is latched on the falling edge of CLK. There are two separate
times when E changes and this is seen by the two AND gates driving an OR gate to
the input D:

i. When left-shifting, take as input the MSB of A. When left-shifting, the S1, S0
control-signals are 1,0, respectively. Therefore when the MSB of A is ‘1’ and
left-shifting there should be a D input of a 1. This occurs when S0 = 0, S1 = 1,
A3 = 1 which is one of the signals that drives the OR gate to the ‘D’ input.

ii. When an ALU operation takes place the output ‘CO’ of the ALU needs to be
stored in E. S0 = 1 when A is parallel loading from the output of the ALU.
Therefore when S0 = 1 and CO = 1 the D input should be a 1, which is the
other signal driving the OR gate.

A problem could occur since S0 is also 1 during a right-shift, therefore E can be
loaded with the value of CO. This is of no concern since right-shifting only occurs for
multiply, and the value of E is altered right after the right-shift micro-instruction
during multiply, by an arithmetic-ALU based operation. So it never has a chance to
have any ill-effect (see the section ‘The Multiply Algorithm’ for more details).

A 7474 ‘D-Type Positive Edge-Triggered Flip-Flop’ will be used to implement E.

2.   ALPHA: The user places the data intended for A in this register. A loads from this at
the first micro-instruction of the instruction multiply. A simple dip switch will be used
to allow the user to enter the value of ALPHA.

3.   A: The Accumulator register holds the result of operations using the ALU, including
right and left-shifting. A loads on the falling edge of CLK. There are five modes of
operation for A:

i. Parallel loading of the output of the ALU when S1,S0 = 1,1. A takes the ‘F’
output of the ALU on the falling edge of CLK.
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ii. Right shifting occurs when S1,S0 = 0,1. The DSR input takes the value of E on
the falling edge of CLK.

iii. Left shifting occurs when S1,S0 = 1,0. The DSL input takes the value the MSB
of Q on the falling edge of CLK.

Pre-loading. A must be loaded from ALPHA during the first micro-instruction
of an iteration of an instruction. This occurs when LA = 1 and R/F = 1. R/F
must also be 1 since each instruction does a number of iterations of the micro-
instructions that make up the instruction. Since the first micro-instruction has
LA = 1, the A register would keep loading ALPHA for each new iteration and
nothing would be accomplished. Therefore only when R/F = 1 (i.e. when a
instruction has just started) and LA = 1 should ALPHA be loaded into A. The
MUX selector input S only goes to 1 when both LA and R/F are 1, which then
channels ALPHA into the input of A, and forces a parallel load (by setting the
S1,S0 to 1,1).

A 74194 ‘4-Bit Bi-Directional Universal Shift Register’ will be used since it has both
parallel loading and shifting capabilities, and does so for 4 bits, as required.

4. BETA: The Secondary Input register holds the value that is added/subtracted with A.
Since it never changes there is no need for a buffer between the user input and the
ALU. A simple dip switch will be used to allow the user to enter the value of BETA.

5. GAMMA: The GAMMA register provides the same functionality as ALPHA does for
A, yet for the Q register.

6. Q: The Quotient register is used for both the multiply and divide algorithms and has
the same functionality as A except that the MUX ‘I0’ input does not come from the
output of the ALU, yet from the ‘SET Q0=1’ logic. The divide algorithm requires that
the LSB of Q be set to 1 for certain conditions. This occurs when the control memory
bit ‘Q0’ is high, then the ‘I0’ input will be a copy of Q except having the LSB forced
to ‘1’. Therefore if Q0 = 1 (a control signal) and S1,S0 = 1,1 then Q will load this new
value and Q will be altered as the LSB is set to a 1.

A 74194 ‘4-Bit Bi-Directional Universal Shift Register’ will be used to implement this
register.

7.    MULTIPLY LOGIC: The signals that control the ALU first pass through the
‘MULTIPLY LOGIC’ at the top of Figure 3. This logic is required since the multiply
algorithm requires two special features that are not supplied by separate control
signals (see the section ‘The Multiply Algorithm’ for further details):

i. When CAR = the first address of multiply and R/F = 0, compliment the fifth
ALU control signal.

ii. When CAR = the first address of multiply + 1 and the LSB of Q (Q0) is 0
compliment the third ALU control signal.
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The output of this logic then becomes the signals that control the operation of the
ALU.

7.    ALU: The ALU takes the ‘A’ input from the output of the A register and the ‘B’
input from the output of the BETA register. The ‘F’ output then drives the ‘I0’ input
of the A-MUX. The CO (carry out) is used in the logic that determines the value of E.
See the section ‘4-Bit ALU’ for more details.

8.    STATUS REGISTER: This register displays the status of A (Z: if it is zero, S: the
MSB, sign-bit), E (C: the carry) and if an overflow condition occurred (OF, only valid
for the divide operation). These signals are valid only when COMPLETE is high and
the clock is high, and are ‘High-Z’ at all other times. This is so as in a more elaborate
system they would only be needed when the ‘arithmetic-processor’ had completed it’s
operation. Z and S are derived from logic based on A, C comes directly from E and
OF is a special case since it is only affected by the divide operation (see the section
‘The Divide Algorithm’ for more details).
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5 4 BIT ALU
The ALU consists of 4 ‘Single-Bit Arithmetic-Logic Circuits’ cascaded together. The
logic for a single bit can be seen in Figure 4 below.

FULL ADDER/
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X0 Y0
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A5 A4
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X YS

⊕X S

A0

C0

S

Ci

Sout

FULL ADDER/
SUBTRACTOR

X0 Y0

A2

A3

C0 Co OF
PREVIOUS
UNIT

A5 A4

A6

X YS

⊕X S

A0

C0

S
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Sout

Figure 4A and B: Single-Bit Arithmetic-Logic Circuits

Figure 4A (left) shows the first stage of the arithmetic-logic circuit, where the remaining
three stages are of the type depicted in Figure 4B (right). The only difference between the
two is that the first stage has the ‘Ci’ (carry-in) set to the ALU control signal A1, where
the rest have the output of the previous Co (carry-out) as the input to Ci.

Ci

Y
X

S

Sout

Cout

⊕X S

 Figure 5: Full Adder/Subtractor Circuit
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Within each of the single-bit arithmetic-logic circuits is a full adder/subtractor which can
be seen in Figure 5.

The ALU control signals determine how the output and carry are generated by the
full/adder subtractor. In the most simplest form, a full adder/subtractor can be set up with
AND and OR gates to enable it to have more than the basic add and subtract capabilities
of the full adder-subtractor.

With the addition of the ALU control signals the arithmetic-logic circuit can now have
additional instructions as detailed in Table 1. Note that this is not the most efficient
method for designing an ALU, yet required due to the complexity of the multiply
instruction (see the section ‘The Multiply Algorithm’ for more details). The ‘x’ values in
the A6 through A0 columns represent ‘don’t care’ inputs.

Instruction A6 A5 A4 A3 A2 A1 A0

X + Y 0 0 1 1 1 0 0

X - Y 0 0 1 1 1 0 1

X + 1 0 0 1 1 0 1 0

X - 1 0 0 1 1 0 1 1

X || Y 0 1 1 0 1 0 0

X & Y 0 1 0 0 1 0 0

X ⊕ Y 0 0 1 0 1 0 0

-X 1 0 0 0 0 1 1

0 0 0 0 x x x 0

X x 0 1 x 0 0 0

 Table 1: ALU Instructions

Table 1 summarizes the ALU control signals and how they affect the arithmetic-logic
circuits to enable the simple full-adder/subtractors to behave as different arithmetic-logic
circuits.

Table 2 shows how each of the ALU control signals affects the arithmetic-logic circuit of
the ALU. Each signal is used for one particular instruction, yet the combination of a
number of them produces more complex instructions. The value in brackets ‘( )’ details
when it is ‘active’.
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ALU Control
Signal

Use

A0 Controls whether the full adder/subtractor acts as a full adder (0) or a
full subtractor (1).

A1 Input Ci of first stage only.

A2 Blocks the Y input (0), passes the Y input (1).

A3 Blocks Cout(0), passes Cout (1).

A4 Blocks S to Sout (0), passes S to Sout (1).

A5 Blocks Co to Cout of stage (0), passes Co to Cout of stage (1).

A6 Blocks X ⊕ Y to output (0), passes X ⊕ Y to output (1).

Table 2: ALU Control Signal Descriptions
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6 MICRO-INSTRUCTION FORMAT

The following table details the format of the micro-instruction:

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OF CB LQ LA A6 A5 A4 A3 A2 A1 A0 S1 S0 Q0 DSC

Table 3 Micro-instruction Format

Fifteen bits are used therefore requiring 2 8-bit EPROMs to provide the control memory.

There are seven ‘fields’ that make up the micro-instruction with each having between one
and seven bits (individual control signals):

1) OF: When a micro-instruction has the ‘Overflow’ bit set, the overflow bit of the
STATUS REGISTER is latched to the compliment of E on the falling edge of CLK.
This is used by the divide instruction to indicate to the user an overflow condition has
occurred. Since the STATUS REGISTER only displays after the instruction is
complete, a temporary holding register is used to keep the value until the instruction is
complete.

2) CB: The CB determines the type of branching through the Full Adder - CAR MUX
logic (Figure 2). See the section ‘Branching’ for more details.

3) LQ, LA: These flags force the Q and A registers to load from the GAMMA and
ALPHA registers, respectively.

 To demonstrate, the A register loading will be explained. If LA is set (and R/F is also
set, indicating the first micro-instruction of an instruction) then the selector bit for the
A multiplexor (Figure 2) is set. The AND of LA and R/F also forces the S1,S0 to 1,1,
of A which means that at the next falling edge of CLK, A will load from ALPHA.

 The same procedure applies to Q. They are loaded separately since some instructions
don’t require both, and specifically the multiply instruction only loads Q.

4) A6 through A0: The ALU control signals A6-A0 determine the type of operation that
the ALU performs. These control signals first pass through the ‘Multiply Logic’
(Figure 2) since some special conditions apply to these control signals when the
multiply instruction is being executed (see the sections ‘4 Bit ALU’ and ‘The Multiply
Algorithm’ for more details).

5) S1, S0: The A and Q mode selector flags S1, S0 control the type of latching that
occurs for A and Q. These registers are falling edge triggered latches yet latch in
various modes, based on the table at the top of Figure 3. For example if S1,S0 = 0,1,
then A and Q are right-shifted on the falling edge of CLK. All arithmetic operations
involving A loading the result must have S1,S0 = 1,1 (i.e. parallel load) which causes
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A to load the result from the ‘F’ output of the ALU. Since LQ and LA force S1,S0 to
1,1, (for Q and A respectively) therefore the loading of A and Q from ALPHA or
GAMMA and a shifting operation (which require S1, S0 to be other than 1,1) can not
occur simultaneously. Yet a pre-loading of Q and an ALU operation can occur at the
same time (which is done in the multiply algorithm) since S1,S0 = 1,1 for either of
these to occur.

6) Q0: When this bit is set the MUX input ‘I0’ for Q (Figure 2) has the value of Q with
the LSB ORed with 1, in other words the same value as Q yet the LSB is forced to a
1. This operation is required in the divide algorithm.

 In order for Q to load this new value, S1,S0 must be 1,1 (to force a parallel load) then
the ALU must have the logic operation A ⇐ A since S1,S0 = 1,1 will cause A to load
from the ‘F’ output of ALU at the same time. LQ must also be 0 (otherwise the MUX
selector bit for Q will ‘point’ to GAMMA and not the new Q value). Therefore a
number of limitations are imposed on the use of this flag, except if A is to also load
from the ALU in a single micro-instruction.

7) DSC: This bit is set in the last micro-instruction of an iteration of an instruction. As
mentioned before the complex instructions multiply and divide require a number of
iterations/loops of the algorithm to complete the instruction, so the counter SC is
used. DSC = 1 causes SC to be decremented by one on the falling edge of CLK. When
SC = 0 then FINISH and COMPLETE goes high and the instruction is complete. For
non-complex instructions SC is just 1 initially, and therefore a single iteration is
executed.
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7 MICRO-INSTRUCTION CALLING CONVENTION

7.1 EXECUTING AN INSTRUCTION

IR is loaded with the address of the first micro-instruction of the instruction that is to be
executed. On the falling edge of CLK CAR latches the value of IR and SC is loaded with a
value which represents the number of iterations to execute of the instruction pointed to by
IR. For all but the two complex instructions, multiply and divide, SC is loaded with 1
(since only one iteration is required). An example is ‘ADD’ which only requires one
addition. The complex instructions must execute a number of similar additions including
shifting. This requires a counter which the SC register acts as.

After a single iteration of any instruction SC is decremented, via the ‘DSC’ control signal.
DSC = 1 also causes CAR to reload IR causing another loop/iteration to be executed.
When SC = 0 FINISH and COMPLETE goes high causing IR to be loaded again into
CAR on the next rising edge, starting a new instruction.

An external circuit can be used to load IR, ALPHA, BETA and GAMMA from some
‘expression stacks’ when COMPLETE rises, since this signal indicates the completion of
the arithmetic instruction.

Figure 6 shows the sequence of events to execute an instruction. A number of ‘iterations’
are executed, based on the instruction.
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Figure 6: Sequence For Executing An Instruction



ELG4905 Page 22 of 41
Detailed Design Document     Last Revised 95.09.15            Issued Version

7.2 BOOTING THE TRAINER

When the trainer is first turned on the CAR holds an unknown values and therefore
subsequent CLK pulses will cause unexpected micro-instructions to be executed. To guard
against this the trainer must be ‘booted’ or started in the following manner:

1. Turn the trainer OFF.

2. Set CLK = 0.

3. Turn the machine on.

4. Set RESET = 1.

5. Enter the address of the instruction to execute in IR.

6. Set CLK = 1.

7. Load ALPHA, GAMMA and BETA as needed.

8. Set CLK = 0.

9. Set RESET = 0.

10. Subsequent CLK pulses will execute the remainder of the instruction.

The trainer must first be turned off as CLK must not fall while it is on, otherwise the A, E
and Q registers may load (depending on the values of CAR when turned on, which will be
random). With CLK = 0 when the trainer is turned ON, then RESET is set to 1. This
forces the CAR MUX selector input to channel the value from IR as the value to load into
CAR when CLK rises. CLK is then set to 1 causing CAR to load IR. The input registers
(ALPHA, GAMMA and BETA) can be loaded anytime before the first falling edge of
CLK. CLK is then set to 0 enabling the registers (A, E, Q and SC) to change. RESET is
now set to 0 since it is no longer needed as CAR has been successfully loaded at the rising
edge of CLK, and A and Q have loaded (if LA, LQ are set, respectively) on the rising
edge of CLK. Subsequent pulses of CLK will execute the instruction and when FINISH
goes high (indicating a completed instruction) it will act exactly as if RESET was set high,
as above, and cause a loading of CAR from IR. Therefore as long as the trainer is not
turned off, RESET never has to be set to 1 again.
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8 THE MULTIPLY ALGORITHM
The first complex instruction is ‘Multiply’. Figure 7 details the hardware algorithm that
will provide unsigned multiplication:

START,
Multiplicand in B
Multiplier in  Q

SHR EAQ

END
Product in AQ

Q0 = 0

Yes

No EA = A + B

DECR SC

SC = 0 YesNo

A, E = 0, SC = 4

Figure 7: The Multiply Hardware Algorithm
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The algorithm starts by clearing A and E. SC is loaded with 4 since the loop will be
executed 4 times, once for every bit in the multiplier. The multiplicand is in B and the
multiplier is in Q.

The low-order bit of the multiplier in Q is tested. If it is a ‘1’, the multiplicand in B is
added to the present partial product stored in A, else nothing is done. The combined
register EAQ is then right-shifted by one bit. SC is then decremented since one ‘iteration’
of the instruction is complete. When SC = 0 the multiplication is complete.

The partial product that is stored in A is shifted into Q a single bit at a time and eventually
replaces the multiplier. The product of ‘B x Q’ is stored in AQ, where the most significant
bits are in A.

The LSB of Q is tested, if it is ‘0’ then the ALU instruction ‘EA = A + B’ is executed
otherwise it is skipped. EAQ is then right-shifted by one bit. Since no bit testing is
provided for in the trainer, special logic will have to impede ‘EA = A + B’ from occurring
if the LSB of Q is 0 (see below).

The micro-instruction implementation of the algorithm is shown in Table 4 below. Each
micro-instruction will now be described:

Micro-
instruction

OF CB LQ LA A6 A5 A4 A3 A2 A1 A0 S1 S0 Q0 DSC

CLR A, Q ⇐ γ 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0

EA⇐A + B,

if Qo=1

0 0 0 0 0 0 1 1 1 0 0 1 1 0 0

SHR EAQ, DSC 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

 Table 4 Multiply Algorithm

CLR A, Q ⇐ γ
This is the first micro-instruction to be executed for the multiplication algorithm. As with
all instructions, the first micro-instruction loads the registers, yet only for the first iteration
of the instruction. Therefore when R/F = 1 the Q register loads from GAMMA (γ).

A is cleared. This is a special case since A is not actually loaded from ALPHA, rather a
logic operation using the ALU is performed and the A register is cleared. Special logic
must be implemented to only allow this operation to be performed for the first iteration as
well. Taking a look at Table 1 the only difference between A ⇐ 0 and A ⇐ A is that A4 is
complimented. Therefore when CAR = ‘first address of multiply’ (since this only applies
to the first micro-instruction of the multiply algorithm) and R/F = 1 (which occurs for the
first micro-instruction of an iteration), A4 is complimented to turn the ALU command A
⇐ 0 into A ⇐ A command. This is implemented in Figure 3 in the ‘Multiply Logic’.

Now both the clearing of A and the loading of Q only occur for the first micro-instruction
of the first iteration.
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EA⇐A + B,

if Qo=1

IF Q0 = 1 (the LSB of Q) then the arithmetic operation EA ⇐ A + B should be
performed, otherwise no arithmetic operation should occur. Since no conditional
arithmetic operations are available then additional ‘multiply-only’ logic is required in order
implement this conditional operation. Table 1 also shows the only difference between EA
⇐ A + B and A ⇐ A is that A2 is complimented. This should only occur for the second
micro-instruction in the multiply algorithm. Therefore when CAR = ‘second address of
multiply’, A2 is complimented to turn the ALU command EA ⇐ EA into A ⇐ A
command. Again in Figure 3 the ‘Multiply Logic’ is used to implement this. The value of
E for A ⇐ A is not important because the next micro-instruction forces E to load a 0.

SHR EAQ, DSC

The last micro-instruction causes a right shift of EAQ, with E loading 0 in the process. SC
is also decremented, therefore during the final iteration of the multiply algorithm (when
SC is decremented to zero) FINISHED will go high.
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9 THE DIVIDE ALGORITHM
The second complex instruction is ‘Divide’. Figure 8 details the hardware algorithm that
will provide unsigned division:

START,
Dividend in AQ

Divisor in B

SC = 5
EA = A - B

E = 0

No
A>=B

Yes
A < B

Divide
Overflow

SHL EAQ

E = 0Yes

EA = A - B

E = 0

EA = A + B

Yes
A < B

No

No

A = A + B' + 1

A >= B

Qn = 1

DECR SC

SC = 0 NoYes
END

Quotient in Q
Remainder in A

A = A - B

DECR SC

EA = A + B

Figure 8: The Restoring-Divide Hardware Algorithm
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SC is loaded with 5 since the loop will be executed 4 times, once for every bit in the
multiplier plus an additional iteration (explained below). The multiplicand is in B and the
multiplier is in Q.

B is subtracted from A to determine if an overflow condition has occurred, which is based
on the value of E (see below). A is restored by adding B and SC is decremented (the
reason for 5 instead of 4 iterations).

The dividend is left-shifted into AQ with the MSB being loaded into E. A test is
performed on  E, if it is 1 then EA > B since EA consisted of a 1 followed by 4 bits, while
B has only 4 bits. Because E was 1, B is subtracted from EA and the LSB of Q is set.
Now A holds the value:

EA B−
Otherwise if the left-shifted value into E was a zero, then the divisor B is subtracted. The
carry is held in E, and if it is 1 then the LSB of Q is set since A ≥ B. If E is 0 then A < B
and the original value is restored by adding B and the LSB of Q must be 0 (which was
loaded during the left-shift so nothing else must be done).

The micro-instruction implementation of the algorithm is shown in Table 5 below. Each
micro-instruction will now be described:

Micro-
instruction

OF CB LQ LA A6 A5 A4 A3 A2 A1 A0 S1 S0 Q0 DSC

A ⇐ α, Q ⇐ γ 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

SHL,

skip 3 if (E = 1)

0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

EA ⇐ A-B,

skip3 if (E = 0)

0 1 0 0 0 0 1 1 1 0 1 1 1 0 0

EA⇐A+B, DSC 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1

EA⇐A-B 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0

Q0⇐1,DSC,A=A 0 0 0 0 1 0 1 0 0 0 0 1 1 1 1

*EA⇐A-B, OF 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0

EA⇐A+B, DSC 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1

 Table 5 Divide Algorithm

A ⇐ α, Q ⇐ γ
This is the first micro-instruction to be called for the divide algorithm. As with all
instructions, the first micro-instruction loads the registers A and Q from ALPHA and
GAMMA, respectively (if R/F = 1, i.e. if this is the first iteration of the divide instruction).
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A special situation arises if R/F = 1 and IR = Divide, which occurs when the Divide
instruction is first called. When this happens a special skip of six micro-instructions must
occur, rather than executing the next micro-instruction ‘SHL, skip 3(E=1)’. The next
instruction then becomes ‘EA⇐A-B, OF’, the second last micro-instruction of the divide
instruction (indicted by ‘*’). This micro-instruction is ONLY executed when divide is first
started (that is why R/F  = 1 is a condition). It’s purpose is to test for the over-flow
condition (see the description of the micro-instruction below). Therefore the ‘NEXT
ADDRESS LOGIC’ must apply a value of 6 to the CAR FULL ADDERS if R/F = 1,
otherwise it is not the first iteration of the divide instruction and a 1 will be used.

SHL,

skip 3 if (E = 1)

The combined register EAQ is left shifted, with the MSB of A being loaded into E, the
LSB of A being loaded from the MSB of Q and the LSB of Q loads a 0. A skip of three
micro-instructions occurs if E is set (1) after the shift. The CB bit of the micro-instruction
being set indicates a skip, yet the values of S1, S0 and E determine the condition which
causes the skip (see the section ‘Branching’ for more details). In this case when a SHL
occurs and CB is set, the condition for a skip = 3 is that E is set, if E is cleared then the
next micro-instruction is executed.

If the skip = 3 occurs then the micro-instruction ‘EA⇐A-B’ is the next to be executed.
This bypasses ‘EA ⇐ A-B’ and ‘EA ⇐ A+B’.

EA ⇐ A-B,

skip3 if (E = 0)

This micro-instruction causes A to load the result from the arithmetic operation ‘EA ⇐ A-
B’. Again CB is set so a branching may occur. In this case S1,S0 = 1,1 so the effect is that
a skip = 3 occurs for a cleared E, otherwise skip = 1 (execute the next micro-instruction).

If the skip = 3 occurs the micro-instruction ‘Q0⇐1,DSC,A=A’ is the next to be executed.
This bypasses ‘EA ⇐ A+B’ and ‘EA ⇐ A-B’.

EA⇐A+B, DSC

The A register loads from the output of the arithmetic micro-instruction ‘EA⇐A+B’ and
SC is decremented, indicating the end of an iteration.

EA⇐A-B

The A register loads from the output of the arithmetic micro-instruction ‘EA⇐A-B’.
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Q0⇐1,DSC,A=A

The LSB of Q is set, A loads itself and SC is decremented, indicating the end of an
iteration. A loads itself is redundant yet is required since in order to set the LSB of Q it
loads copy of itself with the LSB forced to a ‘1’. Since both Q and A have common latch
control signals S1,S0 then a parallel loading of Q must occur at the same time as a parallel
loading of A. Therefore S1,S0 = 1,1 forces both A and Q to load with A loading from the
output ‘F of the ALU, and Q loads the altered version of Q (with Q0 = 1). Therefore the
ALU operation must be for A = A otherwise A will become altered.

*EA⇐A-B, OF

As stated previously, this micro-instruction is ONLY executed after the first micro-
instruction of divide is executed. It is never executed again during any of the other four
remaining iterations.

The arithmetic operation EA⇐A-B occurs, OF being set causes the compliment of E to be
latched into a temporary register which will later be latched into the overflow flag of the
STATUS register at the end of the divide instruction. If E is cleared due to the arithmetic
operation then it indicates that A ≥ B, which is the case when an overflow will occur.
Even if a overflow condition occurs, the remainder of the ‘Divide’ instruction is executed,
the values that should have been the quotient in Q and remainder in A will be useless then.

EA⇐A+B, DSC

The A register loads from the output of the arithmetic micro-instruction ‘EA⇐A+B’ and
SC is decremented, indicating the end of an iteration. This restores A to the value before
this ‘special’ once-executed few micro-instructions.

This is why SC is loaded with a ‘5’ since these last two micro-instruction are executed
only at the beginning of the instruction ‘Divide’, and DSC is set on the last of the micro-
instructions. Without overflow checking SC would have been ‘4’ as is the case for
multiply, since one iteration must occur for each bit in the divisor. Since the only way to
execute another iteration of a instruction is to have DSC set.
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10 OTHER INSTRUCTIONS

Although the complexity of a micro-programmed arithmetic processor is required for
multi-iteration instructions such as divide and multiply, other more simpler instructions can
still be executed.

The following is a list of nine other instructions that take advantage of the capabilities of
the ALU, four arithmetic and five logical. Other instructions can be derived such as basic
shifting and be programmed into the control memory as required.

Since these are ‘simple’ instructions which do not require multiple iterations, they require
SC to load ‘1’. Therefore the second micro-instruction of these double micro-instruction
instructions have DSC = 1, ending the instruction after one iteration.

All the arithmetic operations are signed, with negative ‘twos compliment’ representation.

ADD
The basic signed addition for four bit numbers. The first micro-instruction loads A. The
next executes the arithmetic operation, and ends the instruction.

Micro-
instruction

OF CB LQ LA A6 A5 A4 A3 A2 A1 A0 S1 S0 Q0 DSC

A ⇐ α 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

EA⇐A+B, DSC 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1

SUB
The basic signed subtraction for four bit numbers. The first micro-instruction loads A. The
next executes the arithmetic operation, and ends the instruction.

Note the only difference between ADD and SUB is that SUB has the ALU control signal
A0 = 1, which causes the ALU to act as a full subtractor, where A0 = 0 emulates a full
adder.

Micro-
instruction

OF CB LQ LA A6 A5 A4 A3 A2 A1 A0 S1 S0 Q0 DSC

A ⇐ α 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

EA⇐A-B, DSC 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1

INC
The value of ALPHA is incremented (A = ALPHA + 1). The first micro-instruction loads
A. The next executes the arithmetic operation, and ends the instruction.



ELG4905 Page 31 of 41
Detailed Design Document     Last Revised 95.09.15            Issued Version

Note the only difference between ADD and INC is that INC has the ALU control signals
A1 = 1, which causes the ALU to force a 1 into the first carry in, and A2 = 0 which blocks
the input from the B register.

Micro-
instruction

OF CB LQ LA A6 A5 A4 A3 A2 A1 A0 S1 S0 Q0 DSC

A ⇐ α 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

EA⇐A+1, DSC 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1

DEC
The value of ALPHA is decremented (A = ALPHA - 1). The first micro-instruction loads
A. The next executes the arithmetic operation, and ends the instruction.

Note the only difference between INC and DEC is that DEC has the ALU control signal
A0 = 1, which causes the ALU to act as a full subtractor, where A0 = 0 emulates a full
adder.

Micro-
instruction

OF CB LQ LA A6 A5 A4 A3 A2 A1 A0 S1 S0 Q0 DSC

A ⇐ α 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

A⇐A-1, DSC 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1

OR
The value of ALPHA is ORed with BETA (A = ALPHA || BETA). The first micro-
instruction loads A. The next executes the logic operation with E loading a 0, and ends the
instruction.

Micro-
instruction

OF CB LQ LA A6 A5 A4 A3 A2 A1 A0 S1 S0 Q0 DSC

A ⇐ α 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

A⇐A || B, DSC 0 0 0 0 0 1 1 0 1 0 0 1 1 0 1

AND
The value of ALPHA is ANDed with BETA (A = ALPHA & BETA). The first micro-
instruction loads A. The next executes the logic operation with E loading a 0, and ends the
instruction.
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Micro-
instruction

OF CB LQ LA A6 A5 A4 A3 A2 A1 A0 S1 S0 Q0 DSC

A ⇐ α 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

A⇐ A&B, DSC 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1

XOR
The value of ALPHA is XORed with BETA (A = ALPHA ⊕ BETA). The first micro-
instruction loads A. The next executes the logic operation with E loading a 0, and ends the
instruction.

Micro-
instruction

OF CB LQ LA A6 A5 A4 A3 A2 A1 A0 S1 S0 Q0 DSC

A ⇐ α 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

A⇐ A⊕B, DSC 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1

NOT
The value of ALPHA is complimented (A = -ALPHA). The first micro-instruction loads
A. The next executes the logic operation with E loading a 0, and ends the instruction.

Micro-
instruction

OF CB LQ LA A6 A5 A4 A3 A2 A1 A0 S1 S0 Q0 DSC

A ⇐ α 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

A⇐ -A, DSC 0 0 0 0 1 0 0 0 0 1 1 1 1 0 1

CLR
A is loaded with the value 0. Although no operation is performed on any register, since no
register is loaded, the instruction requires two micro-instructions. This is due to the fact
that SC is loaded (with ‘1’ for simple instructions), yet at the falling edge of CLK, which
is the same position in the CLK signal where SC may be decremented. Since both a
loading and decrementing of SC at the same time is not possible, therefore they must
execute in two separate micro-instructions.

The first micro-instruction does nothing (also known as a ‘NOP’), where the next
executes the logic operation with E loading a 0, and ends the instruction.
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Micro-
instruction

OF CB LQ LA A6 A5 A4 A3 A2 A1 A0 S1 S0 Q0 DSC

NOP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A⇐ 0, DSC 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1
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11 USER INPUT/OUTPUT

In order for the user to be able to interface with the trainer, logic switches for input and
LEDs (Light Emitting Diodes) for output will be used.

11.1 INPUT

Since the CLK input provides synchronization for the trainer it must be made from
‘debounced’ logic. The debouncing removes any ringing in the input switch. A simple SR
latch will provide the debouncing, as seen in the following figure:

SR Latch

S

R

Q

-Q

Output

Figure 9: The Debounce Logic Switch

The input registers ALPHA, BETA, GAMMA and IR do not require debouncing since
they do not affect any synchronous logic in the trainer. A general ‘logic pull-up’ input
therefore can be used for these registers, which can be seen in Figure 10 below.

Vcc

Vout

Figure 10: Regular Logic Input Switch
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11.2 OUTPUT

All the registers and control signals will be displayed by LEDs. The following figure shows
the circuit to drive the LEDs.

Vin

LED

NPN

Vcc

Figure 11: LED Driver Circuit
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12 CLK TIMING

To provide synchronization for the trainer the signal ‘CLK’ drives all the sequential logic
such as the registers and the D flip-flops. The following diagram details the general use of
CLK and the other synchronization related signals:
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1) CAR POINTS TO IR
2) LA AND LQ ENABLED

CAR IS
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TO IR

REGISTERS OTHER
THAN CAR ARE
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CAR IS LOADED
FROM IR

SC IS LOADED WITH 1

SC = 0 SC IS RE-LOADED

1) CAR POINTS TO IR
2) OPTION :

-IR, α, γ, β COULD BE
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WITH NEW VALUES

a
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d

e

b f

g

C
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M
P
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T
E USED TO IINDICATE
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Figure 12: Synchronization Timing Diagram
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When the trainer is first turned on (a) RESET is high and CLK is low (see section
‘Booting the Trainer’ for more details). This forces the CAR MUX to ‘point’ to IR and
enables LA and LQ to load A and Q, respectively.

Upon the rising edge of CLK (b) CAR is latched to IR, and the micro-instruction control
signals change, and propagate causing the output of the ALU to change according to the
new micro-instruction.

The falling edge of CLK (c) causes the E, A, Q and SC registers to latch. SC is loaded
with the value based on the instruction ‘pointed’ by IR (‘4’ for multiply, ‘5’ for divide,
etc.) when R/F = 1. In this example SC is loaded with ‘1’.

The next rising edge of CLK (d) then loads the next micro-instruction address into CAR,
based on the ‘NEXT ADDRESS LOGIC’. In this example the new micro-instruction has
DSC = 1. Therefore the next falling edge of CLK causes SC to be decremented, and a
short delay afterwards COMPLETE and FINISH goes high (e) as SC = 0, indicating the
instruction has completed execution.

If a stack was used to load A, Q, B and IR then the COMPLETE or FINISHED signals
going high could be used to indicate that a new set of these registers should be loaded in
order to allow a new instruction (and set of data to act on) to be executed. Otherwise the
user can now reload these registers for a new instruction to be executed.

With R/F = 1 (because FINISHED = 1) the CAR MUX again points to IR (as was the
case when RESET was high). Therefore the next rising edge of CLK (f) causes CAR to
load IR, and a new micro-instruction is loaded. The net falling edge of CLK (g) causes a
new value for SC to be loaded (again based on the value in IR), and FINISHED falls.

This sequence is the same for all instructions, with the only difference in the value of SC
loaded, and thus the number of iterations that are executed (and the number of CLK cycles
to complete execution of the instruction).

After CAR is loaded with a new address (upon a falling edge of CLK), the arithmetic/logic
operation takes. On the falling edge of CLK parallel loading or shifting occurs for all the
registers other than CAR. Since this occurs after the arithmetic/logic operations take
place, both types of operations can occur in a single micro-instruction. Therefore a
complete four-operation micro-instruction can be executed in one CLK cycle:

1. Arithmetic/logic instructions (ALU command).

2. Shifting/parallel-load operations (E, A and Q shifting, OR A and Q loading.

3. A ‘skip’ of a number of micro-instructions (a branch) based on E (and the value of
S1,S0, see the section ‘Branching’ for more details).

4. The SC register can be decremented (DSC = 1), and the overflow flag of the status
register can be latched (OF = 1).
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The following example instruction demonstrates the complete four-operation capability:

Micro-
instruction

OF CB LQ LA A6 A5 A4 A3 A2 A1 A0 S1 S0 Q0 DSC

EA⇐A+B, OF,
Q0⇐1, DSC,

skip3 (E = 0)

1 1 0 0 0 0 1 1 1 0 0 1 1 1 1

Decoded:

1. EA⇐A+B (S1,S0 = 1,1 for A to load the result). (Type 1,2)

2. OF flag of the STATUS register is latched with the compliment of E (after the
arithmetic operation). (Type 4)

3. Q0⇐1, causes the LSB of Q to be set (again, S1,S0 = 1,1 for Q to load). (Type 2)

4. DSC, causes SC to be decremented (indicating ‘end of an iteration’). (Type 4)

5. Skip 3 if E = 0 (after the arithmetic operation). (Type 3)

Result:

Therefore both A and Q are loaded with new values since S1,S0 = 1,1. A loads the result
of the ALU operation and Q loads a copy of itself with the LSB set (since Q0 = 1). The
over-flow flag is set E = 0. The amount to ‘skip’ for the determination of the new CAR is
based on the value of E (both of these occur at the next rising edge of CLK). The SC
register is decremented (at the falling edge of CLK).

Therefore the multi-capable micro-instruction provides for a powerful, yet simple to code
program.
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13 BRANCHING

Although branching is not exactly what takes place in the micro-program for the trainer
there is the capability for altering the flow of execution by a single flag ‘CB’.

A combination of CB, E and S1,S0 determine the number of micro-instructions to ‘skip’
or bypass. This logic feeds a value, either 1, 3 or 6 to the CAR FULL ADDER where the
output of drives one of the inputs to the CAR MUX. The other input to the FULL
ADDER is the value of CAR.

How the branching works is as follows. The Full Adder takes as input ‘A’ the value of
CAR and input ‘B’ as the value from the ‘Next Address Logic’ (which is described here).
The output of the Full Adder is just the addition of these two inputs. Therefor the value of
CAR plus an offset is provided at the output of the Full Adder, allowing a ‘jump’ or skip
by the amount of this offset in the control memory.

There is one special case which allows for a ‘6’ to be the output of the logic. This occurs
for the first micro-instruction executed in the divide instruction (not discussed here any
further, see the section ‘The Divide Algorithm’ for more details).

If the CAR MUX ‘points’ to the output of the CAR FULL ADDER (which it does as long
as RESET = 0 AND DSC = 0) then CAR will be loaded from the output of the FULL
ADDER on the next rising edge of CLK.

The following table is used for determining this input that is added to CAR. The SHL
column is a 1 when S1,S0 = 1,0, in other words for a left-shift micro-instruction it is a 1,
else it is a 0, and X represents ‘don’t care’.

CB SHL E FULL ADDER INPUT
0 X X 1
1 0 0 3
1 0 1 1
1 1 0 1
1 1 1 3

Since branching is only used in the divide instruction, the above table was designed
specifically to be efficient for use in that instruction. An example of it’s use shall be
presented now:

The second micro-instruction of the divide instruction (see the section ‘The Divide
Algorithm’) first causes a left shift through EAQ. Since CB = 1 and a left shift (SHL = 1)
then The ‘FULL ADDER INPUT’ is a 3 if E = 1 else it is a 1. Therefore the micro-
instruction causes a ‘jump’ by 3 micro-instructions if E is set otherwise the next micro-
instruction is executed (a jump of 1).
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The ‘3’ was chosen since a jump/skip of three micro-instructions was required for the
divide instruction. This instruction has two different jump  micro-instructions, one active
on E = 1 the other active when E = 0. Some sort of differentiation had to be determined
since only a single bit control signal CB is used in the control memory, which is not
enough to indicate two different kinds of branching. Another micro-instruction control
signal could have been used, yet it was obvious that the difference was that a left-shift
occurred for the E = 1 and a parallel-load occurred for the E = 0. Therefore the S1,S0
control signals were just made part of the logic that determines the amount to skip.
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